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Chapter 1

INTRODUCTION

1.1 Summary of Results

Let (Vk, k ! 0) be a discrete time Markov process with state

space EC(- , ) and let S be a proper subset of E. In several

applications (see [81, [12], and [13) it is of interest to know the

behavior of the system after a large number of steps given the process

has not entered S. For example, if v is a branching process and

S = (0] a limit theorem for (vfV ;1 0 1 ! m n) gives informationon ~ th me )

about the size of v on the set [v > 0).
n n

In [21, Seneta and Vere-Jones have given conditions for the

convergence of

ai(n) = P(Vn=JV0=i,N > n) (1)

where N --inf(m : l:v CS). In many cases, however, all the limits in
S m

(1) are zero. Applying the results of [2] when v is a branching
n

process and S = (03 gives that a = lim cxO1 (n) is a probability
n -), ODI ol)*

distribution when m E(v 1v0 =l) < 1 and Y. = 0 when m ! 1. To

obtain an interesting theorem in the second case we have to look at the

limit of (Vn/cnIVo=i, N S > n) where the cn are constants which

t .

In this instance the most desirable type of result is a functional

limit theorem, i.e., a result asserting the convergence of the sequence

of stochastic processes (V+(t),0 ! t ! 1) defined by

n

v + (t) =(v~nth/cn 1V0=i, N > n) (2)

n S



where [xj is the largest integer x. This was the goal in the

applications cited above but in each case the results given are

incomplete due to problems with the tightness argument.

It was the presence of these technical difficulties which motivated

this investigation. The techniques we have developed allow us to

complete the work mentioned above. While writing out the solutions

to these problems we noticed that the arguments we were giving had

many aspects in common. To determine which properties were used and how

they contribute to the proof, we isolated the hypotheses as numbered

assumptions and studied their relationships and consequences. As a

result of this we were able to formulate general conditions for the

process V+ to converge when S = (- ,0()E.
n

There are two advantages of deriving our conclusions from a set

of basic assumptions. The first is obvious: a person who is interested

in proving a conditional limit theorem may apply our results directly

instead of having to modify our proofs to meet his needs. A second,

less tangible, benefit is that the arguments we give do not depend

upon special properties of the Markov chain and so the proofs may

contribute to an intuitive understanding of the conditions needed to

guarantee convergence.

It is the second idea which has been our guide in the developments

below. Our aim has been to find assumptions which create a sharp

division into cases, i.e., so that the limit theorems hold under the

assumptions given and fails or is trivial in the other cases. To

describe the extent of our success we have to explain our results

in some detail.
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We begin by stating our three basic assumptions: (1) vk s k 2 0

Is a Markov process with state space E C(-o,%); (Ii) there are constants

c I with c /c-4 I so that if x- x and x c EE for all
n n+l n n n n

* then

V n = (Vn./Cnlvo/cn  = xn ) - (VIV(O) = x) = V'

where V is a Markov process with Vy  nondegenerate for some y > 0

and (iii) P( n V2 (s) > 0) > 0 for all t,x> 0.

Here the symbol = means that the sequence V converges weakly
n

as a sequence of random elements of D - the space of right continuous

functions on [0,11 which have left limits. * Nondegenerate means that

p(VX.-f) < 1 for all feD.

Let N=N It is under assumptions (i)-(iii) that we will
Xn

derive conditions for the convergence of (V nIN > n) (a) for all

x -+ x 2 0 and (b) when x c n yes.

We will obtain our conditions for the case x n- x> 0 by solving

a more general problem. In Section 2 we give sufficient conditions for

the convergence of P(. IA) = P(.fnA )/P (A ) when the P are
n n n n n n

probability measures with inf V (An ) > 0. Applying these results to
n

sets A = if: inf f(s) > 0) with t- - te[0,1] we find that If

n x n Xnp n and PX are the probability measures induced on D by V n

n n

and VX , and x n-+ x > 0 then P n(N > n - p(T t)
nU n

sufficient for (V nIN > nt n) (VIT0 > t) when To=inf(t > 0:
inf

n n 0).I/nf~ f(s) !9 0).

In Section 2.1 there is a brief description of this space and the

weak convergence results used in this paper. Most of the results we

will need can be found in (201.

:3



If x -* 0, however, PXn(N > n) - 0 (in most cases) so a more
n n

delicate analysis is required. Our method for proving convergence in

n
this case will be to show that if TC= inffk:v kc then

lir (V[n ' /CnlV 0  XnCn, N > n)

lim nlm (v [Tn /C nv 0
= XnCn, N > n)

lim lim (v[n" /cnlV 0 =Ecn, N > n)
C- 0 n -

him (V 0T > 1)
0

In Section 3 we will show that these three equalities hold if (in

addition to (i)-(iii)) we have

(iv) Pn(N > ntn -n pXfT t) whenever x - x > 0, t -i t > 0 and

(v) P 'N > nt } -, 0 whenever x -+ 0 and t -4 t > 0.n n n n

The key to our proof is the following fact (first observed by Lamperti

in [25]):

Theorem 3.2 If (i) and (ii) hold there is a 5 > 0 so that for

all C > 0 VX cvX(.c). (M)

This sealing relationship identifies the processes which can occur as

limits in (ii) and can be used to deduce many properties of the limit

process. In Section 3.1 we use (*) to compute relationships between

the numbers PX(T > t). These formulas are used to identify trivial

cases and obtain sufficient conditions for (iii), (iv), and (v) to hold.

- 4



In Sections 3.2 and 3.3 we use these preliminaries to prove our

conditional limit theorems. To do this we reverse the usual procedure

for proving weak convergence. In Section 3.2 we develop sufficient

conditions for V+  to be tight. In Section 3.3 we find conditions
n

for the convergence of finite dimensional distributions: 4 .
Theorem 3.10 Suppose (i)-(iv) hold and Vn is tight. If

n

V+= lim (VxIT > 1) exists as is # 0 then V+ V+  if and only if
0 n

x40

lim lim P(V+(t)>6) = 1 for all t > 0

If x c a and (v) holds this condition is equivalent to
n n

P[N> ntlv0 = a]

lim rt for some k 0

In Sections 4.1-4.4 we use the results of Section 3 to prove

conditioned limit theorems for random walks, branching processes, birth

and death processes, and the M/G/1 queue which contain the corresponding

results of [6], [8], [12] and [13] as special cases. It seems likely

that our methods can be extended for the non-Markovian examples studied

by [7] and [11], but we have not tried this.

A more interesting unsolved problem is to prove that if

2 2
S X i  is a random walk with E, = u < 0, E(X -U)2= < and

i=1

P[X 1 > 0) > 0 then (S n.]/n 1/21S0= O,N(.,0] > n) converges to the

Brownian bridge (see [20] p. 64 for a description). Conditions for

convergence are known if R(eexl) < c for e (-a,a) (see (4]) but

methods given here cannot be applied since (ii) does not hold for

I 1/2
c an
n

5



In Section 4.5 we show that the developments in Section 3 can be

modified to prove the results of [5] and [141 for random walks

conditioned on {NB > n) when B is a bounded subset of the state

space. This example suggests that our results may be extended to

conditioning to avoid other types of sets S. Unfortunately there are

no other possibilities. It is easy to show that if (vn/c v=Y, N? n)

converges then n ( U Sc ) is (0), (--co,O], [0,-), or (-o,-) so
m=l n--m

we have already considered the two reasonable cases.

To generalize our results we can consider other types of condition-

ing. A natural candidate for this is conditioning on (v ncA) or

((vn l, vn)EB). Several limit theorems of this type have appeared in the

literature with A = fx) or [a,b] (see [151-[18]) and

B = (-w,O)x(O,co) (see [19]) and it seems that our methods can be

applied. These conditionings have the most effect at times close to 1,

however, so we have to reverse our perspective and new techniques are

required. We plan to consider these limit theorems in a later publica-

tion

* 6



1.2 Weak Convergence and the Geometry of D

Let (S,p) be a metric space and A the class of Borel subsets

of S. If Pn, n - 0 are probability measures on A and

JfdPn- n fdP0  for every bounded continuous f on S then we say Pn

converges weakly to P and write Pn = P There are, of course, many

other definitions of weak convergence.

Theorem 1. The following four conditions are equivalent:

(i) P = P
n

(ii) lim YffdPn ffdP for all bounded upper semicontinuous f
n

(iii) lim P (G) P(G) for all open sets G and
n

(iv) P (A) -+ P(A) for all A with P(OA) = 0.
n

This and most of the other weak convergence results we will need can

be found in [20] or are given in Section 2. In aedition to the standard

results, however, we will need some special facts about the geometry of

D which are not available in an easily quotable form. These results and

some related well-known convergence notions are explained below. Proofs

are given only for results which cannot be found in [201.

Let D be the space of functions on [0,13 that are right contin-

uous and have left limits. Let A denote the class of strictly

increasing continuous mapping from [0,11 onto itself. For f and g

in D define d(f,g) to be the infimum of those positive £. for which

there exists a NCA such that

7



t
and

supi f (t) - g a\(t)) :51 (2)
t

It is easy to show that d is a metric for D ([20], p. 111).

Many facts about the resulting topology for D are given in Chapter 14

of [20]. Two of these results which we will need later are:

f -~sup f(t) is a continuous function (3)
0 !- t 1 I

if 1t (f) =f(t) then it~ is continuous if
t

and only if t=0 or t 1 (4)

For this study we will need information about the continuity of

other functionals h:D -> R. The first we shall investigate is the

modulus of continuity w'(6) = w(6;0,1) defined by
f f

W'l (6;a,b) = inf [max C sup Jf(s)-f(t)Ij (5)
f(t 1 Ii~gr t 11 !s <t< t

where the infimum is taken over all sequences

a < to <t1 * <tr b with min(t -t )>6
0. r-

Theorem 2. f +w'(6) is an upper semicontinuous function.
f

Proof.
Let n > 0. Suppose t . are chosen for f so that the expression

in (5) is less than w() + n~. If d(f,g) < to = TIM( min t - t -0/

and XcA is such that (1) and (2) hold for F-= t, using ?d(t )in

(5) gives u' (6) < (,' (6) + 21.

8



For the proof of The orem 3.3 we will nleed to know about the

continuity of the hitting times which we define for y > 0 by

T (f) = infft > 0:f(t) Aj

yy

uipper semicontinuous:

For Il:!n 5 let

(3 + l/n)x D0 x< 1/ 3

f Wx
n x+ 1/3 .1/3 x 1

~(3 - /n)x 0 _ ! /

g x)g 1/3) 2/3 < x 1- /

All is not lost, however. The next result shows that almost every T

is almost surely continuous.

*FTheorem 3. Let nybe the set of discontinuities of T . if P
y

is a probability measure on D then (y > 0:P(L5) > 0) is a set of

Lebesquc measure zero.

Proof.

Let T (f) inf(t > 0:f(t) > y)
y

T (i in f rt> 0:slip f (S) .2 Y)
y S! t

Clearly, 1)()5 T (f) T+(f) .
y y y



Lemma 1. T+  is upper semicontinuous.
y

Proof

If T +(f < w then for any n] > 0 there is a positive
y

s < T (f) -1 r, so that f(s) > y. If d(fg) < C 0 = (f(s)-y)AI andy0

NEA is such that (1) and (2) hold for 0 0  then g((s)) > y and

X(s) > 0 so T+ (g) < T+(f) + 21.
y y

Lemma 2. is lower semicontinuous.
y

Proof.

If T7(f) = 0 the conclusion is obvious. If T (f) = o thenY Y

sup f(t) < y so if d(f,g) < y-sup f(t), TI(g) if 0 < T() <
t t y  Y

then for any positive S< TMf), sup f(t) < y. If TnE(O,s),
t~s

d(f,g) <0 = (y-sup f(t))A and ?'cA is such that (1) and (2) hold
0

for C C0  then supfg(t):t ! N(s)) < y so 'r (g) > \(s) s-fl.

o y

Lemma 3. If P is a probability measure on D then

ly> O:P(0(f) < T +(> 03 has Lebesque measure zero.Y Y

Proof.

Observe that I t(f) < T (f) only if f(O) = y or f is
y y

discontinuous at Tf), so for any f there are only a countable
y

number of values for which strict inequality holds (see [20], p. 124).

For the other half observe that the intervals rT (f),T (f)) are
y y

disjoint for different y so only countably many are not empty.

10



Combining this with the firsi observation gives rVyT f) < 'J+(f)3 is
y y

countable for each f so appjying Fubini's theorem gives the

desired result.

The preceeding theorem is useful for proofs in which we have some

choice in deciding which T eO use. The examples above however show

that we can in general conclude nothing about a specific hitting time

of interest (say the time to hit (- ,01). As a partial remedy we

will define the hitting times in a slightly different manner for y = 0.

T+(f) = inf[t > 0:f(t) > 03

T (f) = inft > 0: inf f(s) 0 0)

0 t/2 s t

T'(f) infft > O:f(t) O
0

0T(f) = infft > 0:f(t) < 03

We will work with T instead of the "natural" hitting time
0

T' since
0

ff:f(O) > 0,TO(f) > t) = (f: inf f(s) > 0)

(see~~ O 9.2v thnt o
is open (a fact which is useful in Section 2). Observe that if

P,xc(-c,co) are the transition probabilities of a standard Markov process

(see [2 2 ], 9.2.v) then PX(T0 = T) 1 for all x > 0.

01



Chapter 2

CONDITIONS FOR THE CONVERGENCE OF Pn('JA) WHEN inf Pn(An) > 0
n

In this section we shall investigate conditions under which the

weak convergence of a sequence of probability measures P is

sufficient for the convergence of the conditional measures

Pn(-0A) P n(.n A n)/P n(An) when inf P n(An ) > 0.
n

If Pn(A) P(A), we can check that Pn('JA) P('IA) by

showing that P n(B q A n ) n P(B n A) for enough sets B. Sufficient

conditions for this are an easy consequence of a generalization of the

continuous mapping theorem ([20]Th.5.5).

To state this theorem requires come notation: let (S,p) and

(S',p') be complete separable metric spaces with Borel fields A

and J ' Let h , n 0 be measureable mappings from S to S' and

let E be the set of xcS such that h(X n ) h 0x) fails to hold for

some sequence xn-, X.

Theorem 1. If P , P with Po(E) = 0 then P h -1  -h 1

n 0 0 n n 0 0

If the h are real valued and there is an M < - so thatn

fh (x)I M for all n 0 and xcS then for any B with P(3B) = 0
n

Sh (x)P (dx) h h0 (x)P0 (dX)

Proof.

This result can be easily obtained from the Skorohod representation

theorem.

12



Lemma 1. If P n . 0 are probability measures on the complete
nn

separable metric space S such that P n = P 0 then there are Borel

measurable X :(0,l) -, S so that X has distribution P andn n n

X converges to X0  almost surely (with respect to Lebesque measure).n

If P 0(E) = 0 and X n 0 are the variables of the lemma for

P ,n 0 then hn(Xn) ho(X0) almost surely so Pnh ph To

obtain the second result note that I X ncBhn(Xn )- 1 XcBh 0(X )

almost surely and use the bounded convergence theorem.

To use this theorem to obtain a conditioned limit theorem let

h = 1 the function which is 1 on A and 0 on Ac If
n A' n n

n

P 0(E) = 0, then Theorem 1 implies that P (B n A ) - P (B A0 ) for0n n 0 0

all B with P0 OB) = 0. To confirm that this is enough to guarantee

P n(.An) = P0 (-JA 0 ) we use the following lemma ([20], Cor I, p. 14)

with U = (B:P(B) = 0).

Lemma 2. A sequence of probability measures Qn converges weakly

to a limit Q if there is a class of sets U so that

(a) U is closed under finite intersections;

(b) for every xeS and E > 0 there is a B is U with xEB 0

(the interior of B) and B C (y:p(x,y) < Cl! and

(c) Qn (B) -* Q(B) for every B in U.

To translate P0(E) = 0 into a condition on the sequence A
0 n

cJ
note that xcE c  if and only if there is a k and 6 > 0 so that

P(x,y) < 6 and n k implies h0(x) = h (y). If h (x) 1 then
0 n 0

13



h Wx hl (y o l :kmasY A so in this case xeE c
h0y fo aln mas

0c
if and only if xE U(, An A Similarly if h (x) =0 then xcEc

if and only if xG U( n AC)O.
k (I k 'V

From this we get *
E = Eku( kAc)onAc] c [ (flA 0nA]

Using the identity [u ( n ~A:)O]c n ( U An) and a little set

algebra converts the above to

[A(,- u (QkAnj' ( [n E U A.)- - A]

u [n ( U An) - u (n An)O]

Because the two unsightly terms in the above expression are

similar to the ordinary limsup and liminf for sets we will introduce

the following notation:

LIMSP A n U A LIMNF A u(nA=
n k (n k n), n k W: k/

In this notation the conditions to be satisfied for P 0(E) =0 are

(a) PO(AALLIMNF An) = 0 and (b) PO(LIMSPA n- LIMNF An) = 0. From

From Theorem 1 we have that if (a) and (b) hold then

pn (A n - P(LIMNF A n P(LIMsP A n so we have proved the following

result.

14



Theorem 2. If P(LIMSP A - LIMNF A n 0, P(LIMNF A ) > 0 and

P(AALLIMNF An ) = 0 then P n(An) -n P(A) and P n (.A n  P(.IA).

A special case of Theorem 2 which we will need in Sections 3 and 4

is the following:

Example: Let S = D and A = ff:inf f(s) > 0) with t--) t > 0.n S: tn
n

If q = sup t and r = inf t then
mn m m mm fn m fl

LIMSP An l ((f:infsrf(S)> 0))

n (f:inf f(s) > 0)
n=l s<r n

= f:inf f(s) > 0)
s<t

To compute LIMNF A we observen

{f:inf f(s) > 0) if t t for some n m
s! t00

An

n (f: inf f(s) > 0) if t < t for all n m m
,> 0 .9t t-

Since the interior of the second set is the first, we have

LIMNF A n U (f:inf f(s) > 0) ( (f:inf f(s) > 03 A

n=l s!;q s;t

and

LIMSP A - LIMNF An ff:inf f(s) = 0) fT0  t)
s8 t

15



Using Theorem 2.2 now gives that we have convergence whenever

P(T 0 > t) > 0 and the two sets in the last equality above have

probability zero.

This result is sufficient for most, but not all, of our desired

applications. If P(f:f 2 0] = 1 then Pff:inf f(s) = 0) = P T t)
5 T0

and from the computations above we see that Theorem 2 can only be

applied in the trivial case P(T0 > t) = I. To obtain our results

P(f:f 2 0] = 1 and PfT 0 > t) C (0,1) we will use the following.

Theorem 3. Let P be a probability measure and A be a
n

sequence of events. If (i) there exist G t A such that for each mm

P( G) = 0 and there is a k (depending upon m) so that

AD G for all n k ,(ii) P *P and (iii) lim P(A) P(A)
n m n n n

n
then Pn(An) 4 P(A) and Pn(-JA n ) PiA)"

Proof.

By Lemma 2 it suffices to check that P (B n An) -n P(B f A) forn

all B with P(OB) = 0. From (i)

lim P (Bn A) lim P (BqGm)nn n

Since P(6(B n G )) P(B) + P( Gm) = 0
m m

lim P (BqG) = P(Bn G)n m mndm

Letting m- now gives lim P (B n An ) - P(B n A). Since

n n

6(Bc ) = B, P(6(B )) = 0 and we have

16



lim Pn(Bc A) P(B P, A)

Using (iii) now gives

lim Pn(B A n  < lim P (A) - lira P (Be Q A) P(B2 A)

~which completes the proof.

Condition (iii) suggests that to apply this theorem to examples

we would like to construct the largest A for which there is a sequence

GtA which satisfies (i). To do this we observe that if G satisfies
m

(i) then G c n A and P(G = 0 so there are 1 0 so H
m k(m) nm

that

G = y:(x:P(x,y) < C n A
m ! k (m) u

has P( U G -UG) 0.m mm m

The sets G may have P(aG m) > 0 but this is no problem. If
m m

H is any subset, H fy:fx:p(x,y) < F_ C3 k) and ZI < F2 then

F-1 
2oCH) (H so (') n C( ) =0. From this it follows

that P(H) > 0 for only a countable number of E, so we cani*
pick another sequence m m for which the associ ?d G havepic aohrsqee m m m

A thsp Ucnst m ruc 0tinMeFeA s u [ A n J ( =A n L IMN F A n

E 10 m i2m n, m \ m

is the largest set which can occur in (i). Using this observation we

can write the result of Theorem 3 in a simpler form.

17



Theorem 4. If P P and lrn P n(A n P(LIMNF A n then

nn

If A n=(f:inf f(s)> 0), then LIMNF A n=ff:inf f(s) > 0) so the
s:! t s:5 tn

condition above is urn P nff:inf f(s) > 0) - Pff:inf f(s) > 0). The
n S:5t s! t

n

reader should note that if Pff:inf f(s) > 0) = 1 (or P(LIMNF A n)
S:5 tn

in Th. 4) then the conditional measures always converge.
4.

18



Chapter 3

CONDITIONING ON T > n

3.1 Preliminary Results

In this section we will investigate consequences of assumptions

(i) and (ii). Our first result follows immediately from the uniform

convergence assumed in (ii),

Theorem 1. If there is a Markov chain v so that v c

converges to V (in the sense specified in (ii)) then V has the

following weak continuity property:

x
if x -*x, then V m Vx (1)

This implies, in particular, that V is a strong Markov process.

Proof.

The second fact is a well-known consequence of the first (see

[21, Theorem 16.21). To prove (1) we observe that if x- x theren

is a sequence nk increasing to - so that if Yn Xk when
kk Yn

x kYn
n k n < n k+ then lim V k lim V = V

The process which can arise as limits in (ii) also have special

properties because they result from scaling and contracting time in a

single Markov process. The most basic of these is the scaling

relationship given in the following theorem.

Theorem 2. If assumptions (i) and (ii) hold, there is a 6 0

so that

for all c > 0 Vcx cvX(c 6 ) , (2)

1];=t/6 (hrm

1, for all t > 0 lim c /c t (here, t= lim tm). (3)

W. 19



Proof.

Let )\E(O,l]. Let m m n)0 supim f n:c/C < /c ). Since

c ni/cn  * I and c n , cm /cn -*\. If xn -> x and a subsequence

of m n converges to pE[0,11, it follows from (ii) that
n

e~mnm Q = Vnxm(V~n Cm n  v 0  Xncm n ) x

and a subsequence of

(xn) )
c-n ( /( x cmM c

vX~x d 1-lXA~.)

converges to lvXk(P') so V =A-vX(p).

x 0
Letx be a state with P(V 0 x 0 ) < 1. If mn/n has two

subsequential limits pl,p 2E[0,l] with p < P2 then
x x/A ~ vO 0.
Xd1 0o/ d X-10 (p

X 0 I
so if t > 0 and n is a positive integer V (t) = V

x0

Letting n - and using the right continuity of V at 0 gives
x0

P(V (t) = xO) I for each t, a contradiction, so lim mn ()/n

exists and is positive.

If we let p() = lim m (X)/n then p is a positive nondecreasing
n)

function which satisfies p(s)p(t) = p(st). From this it is immediate
d

that P(s) = s for some 6 0 and (2) holds.

To prove (3) we will consider two cases. First, let 6 > 0. If

A6 < t < then for n sufficiently large mn(Ol) < nt < mnGA 2)
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so 1 im Cnt/Cn 7 1im Cnt/ t / 2. Since this holds for all 1

m 6 n 6 n t
and 2 with 1 < t < h2 this means lim c nt/C n . If 6= 0

a similar argument shows C nt/Cn < £ for all £> 0 and this
nt n

completes the proof.

Remark. A function L is slowly varying if lim L(xt) L(t) = 1 for

all x > 0. Using this notation conclusion (3) can be written as

c = n /AL(n). Since we will write many statements like this in what

follows we will use the letter L to denote slowly varying functions.

The value of L(n) is rarely important for our arguments and in

general will change from line to line. Subscripts and other ornaments

will be attached when we want to emphasize that the slowly varying

function depends upon the indicated parameters.

If 6 > 0 we can rewrite (2) as

Vx  d -1/6Vxn 1 /

V = n V (n.) (4) -

so (1) and (2) characterize the processes which can occur as limits in

cx d x
(ii). If 6 = 0, however, (2) becomes V = cVx  and we can no

e x

We have not been able to characterize the limits which can occur when

6 = 0. The next few results show that these processes have some

strange properties.

An immediate consequence of Theorem 1 is the fact that for all

c > 0

cx x (5)
P(T 0 >t) =PxfT 0> tc (5



7M7

If =0 this means that PtT 0 > t) has the same value for all

y > 0 so using the strong Markov property

PY( T 0 > s+t) =EY[T 0 > s; p X(s) (T 0 > t)]

= P y(T 0 > s)P yfT 0 > t)

Since OMt = PIT > tQ is noninci~asing, nonnegative, and satisfies

a((t+s) = e(s)gf(t) 0hsmen PY(T0 > t) = e-t for some N 0

(which is independent of y).

This shows that (iii) is always satisfied if ~ 0. if 6 > 0,

however, we are not so lucky. In this case taking c > I in (5) gives

only an inequality:

P X(T 0>t] t P Y(T 0 > t) when x y > 0 (6)

so we are forced to take a new approach.

Let Sx = infft:PX(T 0 > t) =0). What we would like to show is:

Sx= 0 for each x > 0. From (2), we have:

if c >0 S A c (7)
cy y

so either all the S are infinite or none is.

Suppose S < -. Using the strong Markov property
y

0 = PY T 0 > S = E[T Y+E< T Op ( +) (T 0> S Y- T 3]E

Since V~ y TY y +' E and S y- T +F-< S y it follows from (7) that

the integrand is positive so Py( T < T) 0 for each F_ > 0.

Since V is a strong Markov process this implies Vy (t A T )i
0
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nonincreasing. When we note that for each t > 0,

0 = PY(T > S 3 P(V(t) Ty,T0 > t)PY'T > Sy t) we have shown:
0 y Vt= j0>tp 0 Y

if S < M, VY(t) is strictly decreasing for t < T0  (8)

Having arrived at a strange conclusion under the assumption

S < c we might hope to continue and derive a contradiction. The
y

next example shows that this is not possible.

Example. Let X ,X ... be independent and identically dlistributed

random variables with mean L < 0. If S = S + X for n I then
n n-I n

Sn /n converges in the Markov sense to "uniform motion to the leftLn.

at rate - ' (see [221, Exercise 3.7 if you need a more precise

description). For this limit PYfT 0 > t) - 0 if y + t 0 So

Sy =-Y"
Sy

In this example the limit is degenerate so we wonder- Are there

nontrivial limits with S < c?
y

We will show in Section 4 that no process with this property

occurs as a limit for any of the examples we consider, but the question

of whether (i) and (ii) are sufficient to guarantee (iii) has not been

resolved. The solution of this problem is really of minor importante

for the applications; it is usually very easy to usC (8) to verify (iii).

Up to this point we have only used the scaling relationship for

x > 0. If we let x - 0 in (2) and (5) then we get two more formulas

to help us analyze the limit process.
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0 d 0V = cV ( "c) (9)

p0(T 0 > t) = P 0T 0 > tc ) (10)

0 d 0 0
If 6 0, (9) says V cV for all c > 0 so V 0.

Combining this result with the fact that PX r0 > t) = e for

x > 0 gives

lim P (sup V'(t) > 6 T 0 > 1)

Z10 \0 t-,l

-5 eXlim P sup Vz(t) > r, 0

~o0 to-t.1

so (VZIT > 1) = 0 as F-0. Taking a peak ahead into Section 3.3

0+

we see that this means the only possible limit of V is 0 so we willn

abandon this case and label it trivial.

If 8 > 0, (10) shows that p 0(T 0 > tQ has the same value for

all t > 0. Since P0(T > 03 = lim p (T > U) it follows from the
0 0

uJO

Blumenthal 0-1 law ([221, Theorem a.17) that

P 0T 0 > t) is either - 0 or = 1. (11)

Since fT > t) is open, using (5), (1) and Theorem 1.1 gives

y 0pX rT >- t) -: lim Py (T > t) - p 0fT > t3 (12)
Y1O 0 0

for all t, x > 0.

From (12) we se that1 if P0 T0 > t- I then Px(T > t) = 1 for
0 0

all t, x > 0 and so we expect that the conditioning to stay positive

will have no effect. For positive levels this Is a consequence of the

24
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results tf Chapter 2: if x -i x t using Th<,i 2.4 i,'s

(V n! N > n) (V '1 > 1)

I t X 0~f the S i tua Iiloll becomes, (25 mte Cohpi I (A toil i

n

(each theorem has P (A P (A) as a conclusion) -nd if

lira P N> I 3 , N > V miay, fail to be tight. Conditions for

n

convergence ini ihs case will be given in Section 3.3. The results

given there will Show\ that if the limit exi ts in the sense of (a) then

4- 0
V0 z~ i e the onditioning has no effect. .

For' the rst (it the paper- we will be mainly concerned with what

happens when P' V 0 t jI 1 for some (and hience all) x > 0). Since

X,
P P > t3 is dereasing un P T > t exist,-, for each x > 0.

+ 0 G

Using the sca ing l tat ionshnip givs that this imtit i- i ndrpnlnt

of x. Call it o Irom the Mrkov property

I' h n r, p S1 I s. i

I f 6 - 0, th is agrees with orT prtevious cal-uLOion. I > 0

we Can Use (1) to (linclude

)i 0 1 lII P T ill P 1- 0 0 1. (13)
,1 Ulm(

'he reason For i ll \ tt this conlus ion is the lolloing

Suppos I in Pt > t 0 for all (t - nd (iv) hold
X10

I J -or each is arN > mtv ,x is an inureas tip function of

St hen

(v) P .n, n 0 whenever x " 0 itnd -+ f > I0.
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There is a converse to this proved in [41]:

if (v) holds then so does (iv) (15)

Since it is usually more difficult to verify (v) than (iv), (15) is

not a useful result for checking that (iv) holds. To obtain the results

we will use to check (iv) in Chapter 4 we will use the results of

Chapter 2.

ifpX{T 0  t) - 0 and P (To 0) 1 then from the strong

Markov property PX(f: int f(s) 0) 0 so using Theorem 2.2 gives
O~-t

x
(Vn I N > nt) (VxIT 0 > t) whenever x - x > 0 and t - t > 0.

n a n

From (9)

p 0 T 0) lim P(V (t) < 03 P{V O(1) < 0) (16)

0 0 0
so if P [V (1) < 03 > 0 using the Blumenthal 0-1 law gives

P 1T0 = 03 = 1 and the result above can be applied to conclude:

if pxT 0 = t) = 0 and P[V (1) < 03 > 0, (iv) holds. (17)

On the other hand, if p[vO(1M,< 0) = 0

P0 inf v:(s) $ i if 1 P 0 (q) < 03 = 1 (18)

O71 sf. t q, rational

so V0 0 and Theorem 2.2 cannot be applied. In this case we will

use Theorem 2.4 or another trick (see Section 44).

26



3.2 Conditions for Tightness

According to Theorem 15.2 in r203, a sequence of probability

measures on D is tight if and only if the following two conditions

hold:

(a) lira lim P nf:supj f(t)l > M) 0

(b) if w'(6) is the quantity defined by (5) of Section 1-2
f

then for each > 0

lia limr Pnf:w'f(6) < C) = 0

Because of the complexity of the definition of t,' the second

condition is usually difficult to verify. In this section we will

assume (i)-(iv) hold and develop equivalent conditions, which are

easier to check in our special case, by examining the behavior of

the path before and after hitting ,

If T M(f) > g we can let tI  T (f) in the definition of w'
f

and obtain

f f ,.

+
When f = V the last expression is the 1) modulus of continuity"

n
of a process which starts frnm ;I hight V (T A I ) ind is conditioned

to stay positive for (1 -T[)+ tine units. Since wt have assumed (iv),
x

the results of Section 2 show that (V I!N > n) -, (V~l T > 1) when

x -> x > 0 and using the in'qua litv M ove we (1n prove the Following.
n

Note: Throughout this section we will assume that 6, the exponent in

(2) of section 3.1, is positive.
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Theorem 3. V is tight if and only if the following two
n

conditions hold

(3a) for some > 0 lim lim P(V (T > M) = 0
M-* n-*

(3b) for all t> 0 lim lim P(T (V ) < 6) = 0

That is, we have tightness if the conditioning does not make the

process jump too high or leave zero too fast.

Proof.

The conditions are necessary since they follow from (a) and (b)

above. To prove sufficiency define the post-T. process

x(.)= (v[ T 1, N> n)n [n(T +-) n

Since v is a Markov chain
n

(n (V[n.]AnOV0  Yn T0 > Ln

where

Y = (vnT/C nITE ,N> n)

and

Ln = (l-T T. lN > n)

From Prohorov's theorem ([20] Theorems 6.1 and 6.2) a sequence of

probability measures on D is tight if and only if every subsequence

has a further subsequence which converges weakly, so it is enough to

show that for any subsequence (a) and (b) hold for some further

subsequence.
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Let F_> 0 1 P + i .< 11 0 as k, then (a) and (h)
nk

hold so it suffices to consider subsequences for which

rnk P (T 1)li > 0. In this case the tightness of Y follows from
k- k

(3a). Since 0 - L n 1, (Y n,L n) is tight and so there is i

1, k

sequence of integers m., nk I so that (Y ,L ) (Y,L).I m.. m.
J .1 .

Let h be a bounded continuous function from 1) to R. If

9 (x,t) E(h(Vx)To > t) then E(h(X)) E(g(Y ,L)). Using (iv)n n n n"y 1

and the results of Section 2 we have that as x -; x > 0 and
n

t -) t 0
n

gn(x n,tn) - g(x,t) = E(h(V)IV(0) = x,T0 > t)

so from Theorem 2.1 Eh(X+ ) -> Eg(Y,L). From this we can conclude
mk

X (VjV(O) = Y ,T 0 > L), a process we will denote by V
mk

Since X = V using Theorem 1.1 gives that lim Eh(X + ) Eh(V*)
m k

when h is bounded and upper semicontinuous. Applying this result with

h(f) = 1 A (sup f(t) - (M-I)) +  (see (3) of Section 1.2) and
t

h(f) w f (6) A 1 (see Theorem 1.2) and using the obvious inequalities

sup f (t) !5 C v sup f (t)

t t Tt.

P'rj~ >* P+ P(T. <6 +PT ) T 1

completes the proof.
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Condition (3a) may be difficult to check directly because it

involves estimating the value of V at a random time. Using then

scaling relationship and the Markov property we have for t < 1 that

P(V(1) > KjV(t) = x) = PfVX(l-t) > K)

= P{xV ((l-t)x -6 ) > K]

If 6 > 0 then from the right continuity of V as x-4 c the

above converges to 1 uniformly for t e[0,13 so

lim P(V(l) > KIV(TE) > M) 1

From scaling and the right continuity of V1

lim PX(T 0 > 1) = lir PIT 0 > t)
xIO t0

so the same statement holds for the process V+ . This suggests:

Theorem 4. A sufficient condition for (3a) is

lim lim P(V +(1) > K) = 0

Remark. From (a) it is clear that this is necessary for tightness. An

argument similar to that given in the proof below will show that this is

necessary for (3a).

Proof.

Using the Markov property, if < K

P[V4-(1) > K) =E[T~, l;q ((T 1),-T~
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where q n(x,t) P(V (1) > KV V(1i-0 x ,T > 1). Fromn (V) mId

Theorem 1.1, if x -i* x > 0) a ndc t -~t 0

- nx

171n q (x t ) n q(x,t)

where q (x, t) = P(V(l) > KfV(l-t) =x)TO > 1) so for u ! 1

- + 1/6n+
lrn PrV (1) > K) -- Yurn ErV'(T )> 2Ku *q (V CT ) -T)

n 'K n

116 +
t [infIIq Cx,s):x -> 2KulI' 0 !Es s 1) :Frn PfV (T) > 2Ku/ 6

From scaling q K(x,t) q Kc (xc, tc 6) so if 2K/x - 1

q X(x,t) a q K (2K, t(2K/x) ) and from above

lim P(V+(l) > KI inf q (2K~s)] -171 PiV+(T,) > 2Ku'- 6

Now
P(V n(s) > K IV n(0) =2K) - P(T 0  sIV n(0) =2K)

1 - q K(2K, s) P( J 1 0 K

Let ting u -1. 0 gives

17rn P{V'(l) ;- KI t urn lim PfV +(T )> M)
nn

and letting K--) - gives the desired result.

From Theorem 5 if we know that V +(1) converges then (3a) is
n

satisfied. Trhe next. theorem gives a sufficient condition for ('31)).
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Theorem 5. Lot P be the probability measures induced onn

D[-1,1) by V+(t v 0). If (3a) holds (P ,n 1) is tight. If,

in addition, for every P which is the limit of a subsequence P
n

we have P ff:f(O) f(O-)) = 0 then fP+,n 1) is tight.

Proof.

For all f c D[-1,1] which are constant on [-1,0) if 6 < I

we have

f- IL v 0 A l

From this *

Pnf(;ll P * PnwC'(6;T 'l) >e)
n f n f F

so using the proof of Theorem 3 we see that (3a) is sufficient for

tightness in D[-l,l].

To prove the other result we note that by Prohorov's theorem it

* * p+ p+ * -l
is sufficient to show that if P = P then Pn P = P i where

nk nk
ii is the natural projection from D[-1,1] to D[0,11. If

h:D[0,l] - R has P+(A,) = 0 where A is the set of discontinuities
h h

of h then P (f:f(O) i f(O-) = 0) implies that P (.r) = 0. The

desired result now follows from Billingsley's form of the continuous

mapping theorem ([20), Theorem 5.2): P n P if and only if' n

P h 1  Ph - 1  for each measureable real valued function h withn

P(h) = 0.

Combining the conclusions of Theorems 3,4, and 5 gives the following

result.
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Theorem 6. V is tight if and only if
n

(6a) lir lim PfV (1) > K} 0
K~ n-n

(6b) lir lim PV n(t) > 61 0 for each 6 > 0.
t-*0

From Theorem 6 if we know that the finite dimensional distributions

of V1 converge to those of a process V with PfV *(0) = 03 = 1,
n

then the sequence is tight.

In Theorem 10 below we will give conditions which imply that

if V+  is tight then the limit is lim (vxIT > 1) (assuming this
n x10 0

exists) so in cases when the convergence of finite dimensional

distributions is not known we would like to check that the sequence

is tight without computing the limit of the distributions.

One way of doing this (which we will use in Section 4.3) is

to observe that if V+ (t v 0) converges almost surely (as a
nk

sequence of random elements of D[-i,l]) to a process V withI.
ri PfV (0) > 263 = p > 0 for some 6 > 0, then from the definition of the

metric for DJ-I], lim PfV + (T )-6 > 6) p. Using Theorem 5 andL- nk
kink

Lemma 2.1 now gives:

Theorem 7. If for each £ >0 (V(T) - £)+ 0 then V+

in.

istih

, ,.:. :3

H.



3.3 Convergence of Finite Dimensional Distributions

In this section we will assume V+  is tight and derive
n

conditions for V+  to converge. Our method of proof is not the usual
n

one suggested by the title of this section, however. We will prove

convergence by showing that all convergent subsequences have the same

limit.

The first step is to consider what processes can occur as limits

of the V + . From (i)-(iv) and the results of Section 2, if
n

x

x -x> 0 (VnINn> n) - (VxIT0 > 1). Letting xn  go to zero very

slowly we see that if V+  converges for all x -+ 0 then
n n

lim (VxIT 0 > 1) exists and is the limit process for any x n 0.
x1O 0

Assuming lim (VxITO > 1) exists and writing (V IT0 > t) for
x 0 0 IxX10

lim WVXIT > t) we can give a simple formula for the processes which
X40 0

can occur as limits of subsequences of V+.n

Theorem 8. If V+ = V then there are random variables

nk

t c[O,11 and x t 0 with P(t O,x > 0) = 0 so that

d*

* d x * *"

V ) lt* ")(Vx (-t*)IT 0 > l-t ) (i)

Remark. This characterization shows that if (V jTO > 1) = 0 as

. 0 then 0 is the only possible limit.

Proof.

From the proof of Theorem 3.3 V (TL(V)+t) behaves like V

starting from V (Te) and conditioned to stay positive for I-T,(V )
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units of time. As p decreases, T (V ) does not: increase so as
* * *-

F_1 0, T(V) converges to a limit t Since V is right contin-

uous this means V (T) converges to a limit x

Under the hypothesis of Theorem 8, (xt) -) (VxITO > t) is a

continuous function from [0,m)x(0,-) to Dr0,1] so using the

continuous mapping theorem we see that V (T (V)+t) m (Vx (To > 1-t

Since 0 < V < t on 'L0,T(V)) this shows V has the representa-

tion given by (1).
* , > + .*:

To see that Pft = 0,x > 0) = 0 observe that since V Vn k ,V+

in D, x = (0) V (0) so V (0) = O.nk  nk
k k

It is easy but tedious to show that all the processes given by

formula (1) are possible limits. In the next example we show how to
** *

do this if P(t 0 = l-p and P(t= t,x xj = pF(x) where

p,t C(0,l] and F is a distribution with F(O-) = 0. We leave the

general construction to the reader's imagination.

Example. Let v be an integer valued Markov chain (say,n

a Bernoulli random walk) with satisfies (i)-(i.v) and has V+ , V+

n

for all x 0.
n

Let (rij,O i j < -) be a collection of distinct numbers

taken from (0,1) and let 1j.0. Let v' be the Markov chain defined
n

on 2ZU (ri ,0 i j < c) which makes the same transitions on the

integers as v and is defined on the other states by the following
n

rules
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if i=0 1 '= = -p

Pf v' = r V 
1 l,j v0  o,j p

if 0 < i i [jtj-1 Pv{ = 0 v/ = ri

P(v I = ril V = r. 3 =
1 i'= lj 0 0  1r 3

if i [jt]-i P(v I  0 Ivj=r

Pfv = eh '  I' rv3
P(Vl j 0 rij }  j hi

where for each j, e . h 2 1 is an increasing sequence of positiveS hj

integers and Phi h I 1 is a nonnegative sequence with

p = I so that if

F.(t) = h
h,ehj c t

then F. F as j -> c.3

Having identified the possible limits of subsequences of
x

(VnnI T O > 1) the next step in solving problem (a) is to determine for

which V there is a Markov chain v so that (Vn, T0 > 1) I V* for
n n 0

all x -* 0.
n

xn
If lim P (N > n} > 0 for some x > 0 then it is easy to show

n n

+ 0that a subsequence of V converges to V so in this case if the

k

convergence takes place in the sense of (a) the conditioning will have

no effect.
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To characterize the limit which can occur whcn (v) holds we

will investigate the convergence in the case x c = a. In thisnfn

instance the limit process results from conditioning and scaling a

single sequence of random varia'les so there is a scaling relationship

which allows us to compute the distribution of V from that of

V W

Theorem 9. Let x c =a, Q() = P(.v = a). Ifn n 0

V (1) . 0 then V converges to a process which is 0 0. Ifn n

V (1) D v with Pfv = 01 < 1 then Qa N > n' = n L (n). In the
n a

second case if (v) holds then the finite dimensional distributions

of [V+(s), 0 < s I) converge to those of a nonhomogeneous Markov
n

process V+ which has

P(V+(t)edy) = t-P(tYv cdy)P IT 0 > 1-t) (2)

and px
P(V (t-s)ccly,To > t-s)P >T 0 > 1-tiP(V+(t)edylV+(s) = x) = 0 -

P XT 0 > 1-si

for x > 0 .(3)

If V (t) 0 as t - 0 then V is tight and V V

n 1 1

Proof.

rho, first result is obvious: observe that if V is given by (1)

theh, P(V > OV (t) = x) = P(VX (S) > OIT 0 > -t) I o V*

does n' hit zero after it hits a positive level.

To prove the, second statement note that if \ -. 0

Note: y = i/6.
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aQa(N> (l+X)n) ( , Qa(V n ( 1 ) c d x N > n)P(N > Xnlv 0  xc (4)

Qaf(N > n3 (O'aO)

and from the hypothesis as x -> x 2 0 gX(Xn) = P(N > njv 0 =, x c )

n n n n

converges to P xT 0 >) = W.
+Xx~ * * ]

S(x) > 0 for x > 0 so if V+ (l ) v with Pjv *0) < 1
n

then from Theorem 2.1 Qa(N > (l+\))n/Qa(N > n1 converges to a

positive limit. If we let p(l+\) denote the value of this limit

then since p(st) = p(s)p(t), p is measureable, and p(s) < 1 for

s > 1 we can conclude p(s) = s for some B 0.

This shows that Qa(N > n) has the indicated form. To prove

that the finite dimensional distributions of V+  converge we will
n

use this fact and the following formula:

If k > 1, 0 < tl,... tk 1 and Y1 P... Yk are positive

P(V+(t," < y " +(t ) < yk3
n I 1*** Vn k k

Qa(N > nt t
Qa 1 Qa(t 1Vnt (1)cdx!N > nt1 )' x) (5)(OJ 1
Qa(N > n} (O,Y]I

where
t
I = P(Vn(t2 Vn(tk Y, inf Vn(S) >) = x)

n n 2 2 nSk t l n n

From (iv) and the results of Chapter 2 if x -,, x > 0n
t t

nI (X (x) = P(V(t2 ) y V(tk) k inf V(s) > OjV(tl)=x)

t 1s 1

whenever the y. are all continuity points of the distributions of the
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V(t so if we can show P(' 01 0 we can use Theorem 2.1 to

conclude

P(V- P(tlvc dx)y + (x)
n P 1 )  n k k I (0,yJ 1I

which shows the limit process has the indicated form.

Let G (x) = P(V +(t) xj, G(x) P(v x). From (iv) and
n n

Theorem 2.1

rG (dx),C4x) - f G(dx) %(x)

(0,a) [0kn k

a /a -
Since Q (N > (1+\)n)/QaN > n) - (l+X) using (3) gives

( - G(dx)j x)

Now (v) implies ,k(0) 0 and we always have $ Cx) 1 so this

means that G(O) 1-(lX) for all \ > 0 or G(O) = 0.

To complete the proof of Theorom 9, we observe that the last

statement is an immediate consqequen'e of T'-orms 3.4 and 3.5.

Combining the results of Theorems 8 and 9 we observe that if (i)-
4-

(v) hold and V converges in the sense sp.cified by problem (a)
n

then the limit is either - 0 or - 0 at each t > 0 so there are

only two possible limiLs (assuming I in (VX! 10 > 1) exists).

x-*O

At this point we are ready to consider conditions for convergence

to each of these limits but there is not really much to say. The

next result, which summarizes our main conclusions is an easy consequence

of Theorems 8 and 9.
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Theorem 10. Let v be a Markov chain for which (i)-(iv) hold.
n

Let x -* 0 and suppose V is tight. V+  0 if and only if
n n n

P max V+(s) >EI - 0 for all > 0 (6)

0  
1ax n

If V lim (V'IT O > 1) exists and is - 0 then V+  V +  if and
x0 n

only if

lim lim P(V+ (t) > 6) 1 for all t > 0 (7)
610 n->c

If x c a and (v) holds then condition (7) is equivalent to

a n~

Q N > n1 = n-( L (n).S a

Proof.

The first result is trivial. To prove the last two it is

sufficient to show that the condition given in each case is

equivalent to assuming that for all subsequontial limits V*!*
PV (t) > 0) = 1 for all t > 0. For the s(econd result this

claim is obvious. For the third it follow-, from the last computations

in the proof of Theorem 9.
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Chapter 4

EXAMPLES AND EXTENSIONS

4.1 Random Walks

If X2X is a sequence of independent and identically
12

distributed random variables, Sn = Sn-l+ Xn, n 1 defines a

random walk. Necessary and sufficient conditions for the convergence

of (Sn - b )/a are known (cf. [29], Chapter 7). In this section
n n n

we will use some of these results to show that if S /a converges
n n

in distribution to G then (i)-(iv) hold and the results of

Chapter 3 can be applied to prove the appropriate conditioned limit

theorems.

Theorem 1. For the nondegenerate distribution G to be the

limit of some sequence of normalized sums (S -b )/a it isn n n

necessary and sufficient that it be stable, that is, if X,X 1,...X k

are independent and have distribution G then there are constants

a' >0 and b' such that
k k

X+ ... + x + b'
Ik k k

Theorem 2. 1(g) EeX is the characteristic function of a

stable law if and only if

log $(0) = ,- °cK[1 + bu. (e)e/Ic] e , e (I)

where 0<c-: 2, -1 b 1, c z 0 and

_ tan(act/2) if Cy 1

t(2/Tt )log i if a~ I
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a is called the index of the stable law, b is a shape parameter,

\ gives the drift, and c is a scaling constant.

Definition. A distribution F is in the domain of attraction of

a (nondegenerate) distribution G if there are constants a > 0, bn ' n1

so that F n*(a x + b ) = G(x). (Here Fn*  is the n-fold convolution

of F.)

Theorem 3. The distribution F belongs to the domain of attrac-

tion of a normal law (a = 2) if and only if as n -*

n F(dx)/ f x2 F -)x 0
I xl>n lxl

F belongs to the domain of attraction of a stable law of indox

0 < U < 2 if and only if

[l-F(x)]/[l-F(x)+F(-x)] P as x -,o

and

l-F(x)+F(-x) = x - L(x)

From the proof of this result in [29j, pp. 175-180 we can conclude

the scaling constants a are of the form nl /a(n) and satisfy

n

ex if a < 2

r4 l-F(a nx)+F(-a n .4

0o if c=2
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The centering constants can be chosen to be

nEX1  if I < 2

nE(-a VXAa ) if a = 1 (see [24, p. 315)

0 if 0< u< I

From Theorem 3 it is immediate that if S = 0 and

(S n-b )/a = Y then the finite dimensional distributions of

V n(t) = (S [nt]- b[ntj)/a n  converge. Skorohod has shown (Theorem 2.7

in [32]) that there is also weak convergence.

Theorem 4. If S is a random walk and (S n-b )/a = Y

(nondegenerate) then V * V a process with stationary independent
n

increments which has VO(1) d Y.

If lim b /a = (finite) the centering is unnecessary andn n
n-),=:

S /a satisfies (i)-(ii).n n

The next step is to check that (iii) holds. To do this we

observe that if PY(T0 > t) = 0 for some positive y then from (8)

of Section 3.1, (Vx(t),t < T0 ) is decreasing. Since V has independent

increments this means Vx(t),t 01 is decreasing and so

P[vY(t) 0) = 1.

Conditions for stable processes to have this property are well-

known. Using results from [28] we see that if PY(T 0 > tl = 0 then

o < < 1, b= -1, and X < 0 in (1). To complete the proof we will

use the scaling relationship to show that none of these processes can

occur as limits in (ii).
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Let t (e) = E exp(ioV (t)). Since V0 has stationary independent

t0 d tV
increments $rCe) = (e) t . From scaling V (t) =t v(1) so

t~)= E (tyq ). Using t log $1 () = log $ (t*e) in (1) gives

For limits of S /a n = 0 if c 4 1 and b = 0 if a = 1 (2)n n"1

Since these conditions are incompatible with the ones given above we

have shown that (iii) holds.

To prove that (iv) holds we start by observing that stable laws

have continuous distributions ([291, p. 183) so

PX(To= t) < P(VX (t) = 0) = 0. If P(V 0(1) < 0) > 0 then the results

of Section 3.1 can be applied to give (iv). If P(V (1) 0) = 1 then

PX(T > t) - I for all x > 0 and (iv) followq from remarks after

Theorem 2.4.

Using (14) of Section 3.1 we see that (v) is satisfied in the

first case but not in the second. Having established that (i)-(v)

hold when V is not increasing, the next step is to give conditions

+
for the sequence V to be tight.n

Theorem 5. If X 1 has a distribution F so that F n*(c G,

4a stable law with G(0) < 1 then V+  is tight for x = 0.n n

Remark. If G(0) = 1, V is decreasing so (VZIT 0 > 1) fZ and

(VCIT 0 > 1) 0 as 9-0. From the Remark after Theorem 3.8, we see

that 0 is the only possible limit in this case.

Proof.

The proof will be given in three lemmas, each of which assumes the

hypothesis of Theorem 5 and uses the notation of Theorum 3.9.
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Lemma 1. If G(0) = < 1 then Q0(N > n = n- L(n).

Proof.

Since stable laws have continuous distributions

lr Q0(Sk > 01 = 1-f. By a formula due to Spitzer ([33], p. 330) if

Sk  is a random walk then

k

0 = (1tn  exp ( -- P(Sk W > 0))
n=0

Writing 8(t) for the generating function of Q0(N > n) and factoring

the right hand side gives

e (t) = (l-t) -exp (k -- (PS > 01 - (l-f))

Now L(1/1-t) = exp -- ak  is slowly varying whenever lim ak= 0

(for a proof see [15], p. 1159) so applying a Tauberian theorem

([24], p. 447) gives

4 n
Z P(N > m) = In L(n)
m=l

Since PfN > m) is a decreasing function of m, applying a generaliza-

tion of Landau's theorem ([241, p. 446) gives

1 InJim P(N> n]/ n 1 P(N > k) = -r3

n. co k= 1

so if < I, P[N > n) = n L(n).
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Lemma 2. Condition (3a) of Theorem 3.3 is satisfied whenever

the limit process has PfV O(1) > 01 > 0. If a = 2, we have in

addition that (V+(TE)- £) _ 0 so tightness follows from Theorem 3.7.

Proof.

Let X. = S S Let I = inf(i~n:X X./c > yil, with Iy =

if the set is empty.

n

PfN> n, lY < PfN> i-1II y = iP(I y = i)
n niz1

Given I Y = i, XI .. Xi  are independent and have common distribution
n 1' -l

function H y(x) = (F(x)/F(ycn))A 1. Now H (x) , F(x) for all x so

if U U 2. .Ui 1  are independent random variables each with a uniform

distribution on (0,1) then

d -l d-I((X 1 '...X i-l) I y  i d (H-I(u I),...H I(Ui_)
'"n y 1'yy i-i

-1 d(F (UI),...F -(U _ )) d (X I ... ,X

where the equalities are between distributions and the inequality holds

almost surely. From this it is clear that P(N > i-l In il ! P(N > i-I).n

Using this in the first inequality we get

n

P( Iy< -IN> n) f, -P(N > i-l) PI,- i)
n i (l > nj n

-~ -

NOW P(N > n) = n- L(n) and P[I y  i) ! PfX > yc so
n n '

n
i-, L(n)

P(IY < fN > n) 5 n(1-F( c

n(n 'L(n)
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u(x) [x+l]- L([x+l1) is regularly varying with exponent > -1, so

from Earamata's theorem

n P n

i iL (n) I U(X)dx
prl 0

n(n L~n)) nu(n)

From Theorem 3 if 0 < a < 2

1r -Fx)+F(-x eE)i

and lirn n[l-F(c ny)-iF(-c y)] cy-"' so in this case
n no

lim pi< N n> 0 . pey /l). From this we get

ur un [V(TO) > y+E. F <i lir Pf mN > n) 0

so (3a) is satisfied for 0 < ae < 2.

To prove the result for u 2 we observe that from above

limr P(Iy < colN > nj :5 2 lrn n(I-FCycn)
nn

n- -4-

*so using Theorem 3 gives (V +(Tq) +F) 0 and applying Theorem 3.7
An

gives that the sequence is tight when (1 2.

To complete the tightness proof when 0 < ae < 2 we use Theorem 3.5

and the following.
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Y- +Lemma 3. lir I P(V+(u) > yj = 0.n
u10 n-.

Proof.

If k = n-[nst] thenn

PfVn(st) > y,N> ni p(ent y csnt cx,N> snt)P(N> k v- xcn(YC ) cen nt(Tn cdx, > nt(N, kni Vo-Xn )

If m = nt - [nst] we have

C Vc = Vnt(--7)cdx'N> sn P(N> mIVo= xc)

P~cn- V~nt cdx) (stnO
SP(N > ntl

Using the last two equations gives

P{N > nt) p(Cnt V+ (snt' \. dn p( N .k n VoXCn)P(V+(st) > y) ------- 7{ Y nP (y, V d)nn~ ' e { o-c n  -
nP(N > n ~ n Tc n nttj P 05-m T~

(y ,cc) cn n'v7

<P(N > nt) P -- Vtnt > Y l
cn

From Lemma and Theorem 3.5, V is tight in D[-,l] so for any
n*

subsequence there is a further subsequence with V V in
nk

Since for any s 10 we can pick a t < 1 with P(V (s t) V (s t-)

for some a >I] = 0 the above gives (for appropriate values of y)

lim t PfV+(u) > Y lim p(t (st) > Y3
nlO n- stO

n 4- 01/.- -4

-f P(V*(O) > yt
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Since PiP(0) > zj lim Pf I z < -IN > n) using an inequality from the

proof of Lemma 2 gives

t_fpv*(o) > yt-I/a ) ! pcy t

and we can complete the proof by letting t40.

At this point we have given conditions for V+  to be tight andn

Q ON> n) to be regularly varying so from Theorem 3.10 to prove the

conditional limit theorem in the case G(O)c(O,1) it only remains to

show lim (vxT 0 > 1) exists.

x40

Theorem 6. If V is a stable process which can occur as a limit

in (ii) then lim (Vx T0 > 1) exists.
x 0

Proof.

If V is decreasing or PX[T 0 1) 1 thn the result is trivial

s, for what follows we will assume Px(T 0 > t) t 1 and hence

P XT 0 > 1)40 as x10.

Let R = 0 and for k _ 0

0 0

R I = infft > R : V 0 (t+R k ) - V0(t) -
k+l k' k

Since V0  has independent increments R - R E k 0 are independent
k+1 k'

and identically distributed. Since P[RE t = PjT0 t - 1 as
1 p0

0
t each Rk < P almost surely.

Lf - R > 13. From (iii), P(R >13 =Let K inf~k l:Rk k-l

P'(T 0 > ) > 0 so ME and SE = RK are finite P0 almost surely.

E0 0 E 0
Let U (t) £+ [V (St + t) v (S£)]. Since V has independent
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increments it follows from the consti-uction that UJ (yE1 T 0> 1

(see Lemma 2 of Section 4.3 for a detailed proof of a similar

result). To show that (VET T0 > 1) converges weakly as 640 we will

show SE6 and U E converge P almost surely.

0
Let m(t) =inif V s). Let S =infrt:ni(t) = m(t-id)}. Since

we have assumed V 0is not decreasing PfV 0(t) =m(t)) < 1 and

it follows from (iii) that P 0 S <m3 1

Lemma 1. Mim S 5, P 0  ams ue

Proof.

Suppose S - -C! CO. By choosing a subsequence we can guarantee

EmIn E
that either S t for all m or S <t for all Iia. if S it,

0 Em
it follows from the right continuity of V and the definition of S

that m(t) =m(t~l) so S -; t.

To prove S t in the sccond case observe thaf if 6> 0 and

OEm m

-E in 7 nf V (S + s)-V (S)

0 .E s!! 1

int' V 0 (t+s)3 -
0 (SII

0 0inf V0 (t, v (t-)

so m(t) =m(tl-A') for all 6 .' 0.

0

To conclude m(t) =m(t+l) it suffices to show \1 (t+l)

V 0 ((t-~-)-) . To do this we observe max (S En + 1) is an increasing
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sequence of stopping times which are less th~ln t+l so the desired

conclusion follows from the"quasi left continuity of V (see [221,

p. 45 and Exercise 1.9.14).

Lemma 2. iM S S P almost surely.
E$0

Proof.

Let X = rn(S). The first step is to show X V 0S(S-) P almost

surely. To do this we observe:

(a) If T is a positive random variable and 6 > 0 then there

0 0
is a stopping time Q6 so that P[Q6 ; T, V (T-) > V (T)) 6 and

(b) if Q is a stopping time and P0 (T 0 = 0) = 1 then

P( inf f(s) =f(Q), = 0 so P(S=Q} = 0.

Q S Q+l

Now R is the first time m(t) - m(R.) < -E so we have for all
k+1 k

E there is a K' so that V (R ,)c[X -EX]. Since K 5 K' this

0shows limSE S P almost surely.
Ejo

Having shown S S, to show U E U V (S+t), we need to prove

V (S) = V 0(S-). Although this is obvious the details are tedious to

write out so we will refer the reader to Lemma 3.2 of [31] to complete

the proof.

Remark. Although this completes the proof of the conditioned limit

theorem in the case G(O)W(O,l), our solution is still somewhat incoin-

plete because we have not given the distribution of the limit. If V is

Brownian motion the formulas can be found in [261. If V is a stable

process, however, the distribution of the limit is known only in one

special case (see Section 4.5).
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4.2 Branching Process

Let z~ n a 0 denote the number of particles in the n thgenera-

tion of a Galton Watson process with z 0 _ 1 and particle production

governed by the probability distribution (p.,i=O,l,2 .... (For a

detailed definition consult the first few pages of [34] or [35]'.)

CO
Let f(s) P Z psl be the generating function of z1and for each

n -- 2 let f n(s) f(f n-Cs)) be the generating function of zn.

Kesten, Ney, and Spitzer ([34I, p. 19) have shown that

Theorem 1. If Ez = 1 and E(z -1) =2k:,= te

Li n J-

uniformly for 0 !5 s < I.

Setting s = 0 in (1) and noting that PIZ > 0)1 l-f (0) we

obtain the following formula for P(z > 03.
n

Theorem 2. As n -4 - Prz > 0)3 (nX) 1  (2)

Another immediate consequence of Theorem I is the following

conditioned limit theorem.

Theorem 3. urn P(z 11/nX> 1 n>01 e- (3)

Proof.

E e n 1z 11> 0)

EGe n ;z n> 0)/E(1;,z n> 0)
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(f (e-(Y/ n ) - f (0))/(l - f (0))n nl I

(1 - ( - f (e ))/CG - f (0))n n

From (1) lim [n(1-f (e )) =X+ lir [n(1-eIA) -1 and from
n

iI_>oa fl-*c

C2) Urn n~l-f~ CO)) = 1I/x so

-,-tz n/n\.Jim (C n z 0) 1 (1, (1 + )]

which completes the proof.

Using the last two reaii1 w, , T; . i,, I j I I

'ZL/flX zo= y Xn) . Since th,.................. V

we have from Theorem 2 that if U I :ncestors

which have offspring alive -,I t im, torI i .d .. 1i i - n distri-

bution with mean v. Using Thertm r. i Vh v - 0

=rnn) e -y X " - )
n 0 -Y ' klira E(e n I Zo n) c i p,/

fl-, 1; -0

Using the Markov property and Theorem 2.1 il is easy to compute that the
V

finite dimensional distributions of Zn (Z Ln.]/1N. Zo= Ynxn) converge

(a result due to Lamperti [361, Theorem 2.5). In [271, Lindvaal has

shown thait the sequence is tight so we have the following.

YnTheorem 4. If Yn -* y > 0 then Z - (ZfZ(O) =y) where Z is

a nonnegative diffusion with transition probabilities satisfying

i y P(Z(t+s)cdylZ(s) = x) exp(-xc/l+xYt)
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for l. rnolega livte t .I ,

Observe tha! 0) i, m, i15orhilng state

xx
a, -1 .) > l I-

and we 1 liev tn t e ~Ia 'F om Lh onre,, 81 0. t~ r. I p.

Theorem 3.9 to conclude-

4-I
'Ihenrem 5. Z (z /nz- l'z 0) '(Z' ' (0) 0() whe re

Z is a Marker process wi th

and

2 2 k-1

P ( dyZ (s) =x t-)e

1 --

Proof.

Froni Fhio remi 3 9 we hazve t hat theT , I n i t, ] i oe:'. in i di s I ri bu t ions

of Z C"11 Verge'(. I'() ohtiole thei( f, i'milas I_'r oni hove( fVK fl 1ihosk in

Section 1.3 u-se (2) ,('I) , aIioi (6) of~155 ion m ;10 t at !rom

the discu.ss ion foll]owinag ITheoro :'' 3

P(Z t1~ c(Y'I.'-; -> tx- X

0 . - / x' . t - l



To prove that the sequen,, i,, tight \Ne have to check that for the

distributions given above Z (t) (); .0 s ;-1 0. To do this we

observe that if v > 0 and t 0 then

5 5 :

p(Z+(t) > y) 2. -2-x/td t-1 -v./i.

---x e " -.'. 0

,y

II

II
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4.3 Birth and Death Processes

We will call an integer valued Markov process fU(t),t 0)

a birth and death process if starting from state j, U remains there

for a random length of time having an exponential distribution with

--I
mean (X.+u and upon leaving j, U moves to states j-1

and j+l with probabilities u.(X. u.) and X.(X .+u )l

respectively.

It is easy to see that if a birth and death process satisfies (ii)

then the limit is a strong Markov process with continuous paths, or

a diffusion. In 141], Stone has identified which diffusions can occur

as limits in (ii) and given necessary and sufficient conditions for the

convergence of birth and death processes to these limits.

As the reader can imagine these conditions arc, filferent when

the state space of the limit process is (-,-) and '0,-) and in

the latter ease also depend upon the nature of the hountdary al 0. To

keep things simple we will give the results fir -l in the. case the state

space is (-,-) and the diffusion is regular :and then consider the

other possibilities.

Definition Let r = in[ft > O:V(t) = x). A diffusion V with
x

state space (-, ) is regular if pX( T < -3 > 0 for all x,y.

Theorem 1. ('41], pp. 51-58) A necessary and sufficient condition

that there exist a strictly increasing sequence c such that as n-
" n

U(n )/c converges (in the sense of (ii)) to a regular diffusion on

(-o, j) is that the sequence defined by i n n /u n
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(ci) 1 -1 < :-1
-1 1 2

satisfy (X g n L (n) and vn= n L (n) where the
nan 1 2

a, > 0 and the L. have lim L (xy)/'L (y) = 1 for all x > 0 and

lim L.(-x)/L.(x) d.E(O,o).1 1 1

In this case c n L(n) and the limit process is an

diffusion with scale J and speed measure is given by

x 1Ax Ct1x 0

J(x) =

-d1Al x x < 0

BxCt 2  x_

x , a 20

-d2B I x I  x < 0

where A and B are positive constants.

Note: To work with this theorem we will have to use some fact3

about the speed and scale measures of diffusions. A complete discussion

of this topic is given in [381, but very little of the information given

there is needed to prove our conditioned limil theorems. A readable

summary of the results we will need is given in Section 4 of [391

To show that (iii) holds we observe that if PY(T 0 > t) > 0 then

from (8) of Section 3.1, VY(t A T ) is decreasing for each t > 0.
0

Since V has continuous paths and the strong Markov property this

implies PY(7 < -o = 0 for z > y, which contradicts the assumedSz

regularity.

To prove (iv) we will use (17) of Section 3.1. Since V is
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regular, V 0 0 and it follows from the scaling re]alonship that

0x
P(V (1) > 0}=0. To establish thatPX(To = t) = 0 we recall that

It8 and McKean (see Section 4.11 of [38]) have shown that the transition

functions of a diffusion have densities with respect to the speed

measure so

STo 0 = : t) f PfVX (t) = O _ m((O)) = 0

X.
Since V is regular P tT 0 > t) 5 1 and from (13) it follows

that lim PX(T0 > t) = 0 for all t > 0. Since PfN > mv 0 = x} is
x10

an increasing function of x and (iv) holds using (14) gives that

(v) holds.

Having established (i)-(v) we will now prove the conditioned

limit theorem by checking the hypotheses of Theorem 3.10. The

first two steps are easy. Since (V+(Te) - ) 1/C n - 0 it is

immediate from Theorem 3.7 that V+  is tight for x -) 0. To get then n

asymptotic formula for Q0 (N > n) we observe that from 40] p. 253

0,-we have Q0,N > n = n -L(n) where p = /a 2.

To complete the proof we have to show:

Theorem 2. If V is a diffusion which can occur as a limit in

Theorem 1 then lim (VxIT0 > 1) exists.

Proof.

Suppose V is defined on a probability space with 7-fields

Jt = (V(s):s < tj and shift operators e t tL 01. Let S=

infrs > 0:V(s) = E,V(u) > 0 for s < u s s+lj and lc Z(t) = V(S+t).
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Lemma 1. For E.> 0 and all x S - P~ alinost surely. As

0
£10 S is0  anti Z,-, Z0  P almost surely.

Proof.

Fo E> lt 0 k+l k~+
Fo F>OltRE = -I andi R. - infft R + :V t)

If y tthen from [39], p. 53:

P y R <lim P~ 'fL

M(Y)O

-lim J(x) -J((y-Z)M) _

J (E) -J((y-VZ)M)

so using the strong Markov property and induction gives that

P xfR < 1 for all x and k. Now if V has no zero in

[R R, 13 then S 5 Rk SO

and hence

P S <cr Co I

To see thlat SF J S 0no te that

.4 Ph 6< j 6 supflt-S 0-It > &SOM 01 >4 0.

suffices to show:
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Lemma 2. For S>O0 Z and IT > 1) have the same

distribution.

Proof.

Let F be a Borel subset of D. Clearly,

P (Zzcv) PfZccV,"s T)+ ;-F'SS>

Since T is a stopping [time and XV a strong Markov process

Pf 2 eF) EFP(ZeF,SC = -c I

if S e,:> then V(s) = 0 for some sc(T£, T, 1]. Letting

inffs:sc(r 'r- + 1], VT(s) = 0) where T' -~cif the last set is

empty, we have

P[Z CFSz> P3 = PfZ- F,r <o

-E[-,' < c;E(lf~i ] (3)

Ontest ( ,can be written as 01(0-) so from (3)

and the stronig Markov property w e gcie

Piz .I. S(E 0 )P-" co

-P(ZE Fj(1 -P'To > 1) (4)

Combining (1), (2) , and (4) gives

*Note: when P is written without a superscript the indicated probability

is independent of the initial distribution.
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Pf ZleF = P(V cF T > I +- P{zeIFK(I - P'T 0 > 11)

so

P(Z,&F] P(V"CFITO > 1)

which proves Lemma 2.

This completes our development for the "regular" case. The

next step is to determine in what other cases we can get a nontrivial

conditioned limit theorem.

To do this we observe that from (16) and (18) of Section 3.1

0 - 0
either p fT = 0= 1 or V 0 so if V is not regular there is

0

no loss of generality in assuming the state space is LO,). In

Section 3.1 we argued that if 0 was inaccessible from positive

levels then the limit theorem is trivial so we will assume

PX[T 0 > t) ; 1. In this case (13) of 3.1 implies limP>? 0 > t 0
0¢

so (12) of 3.1 gives P (To = 0) 1. Since P01T+ = 0) 1 1 if and
0

only if P 0fV 0(1) > 0) > 0 there are only boundary possibilities to

consider

(a) reflecting: PO[To 0+  P (To  01 1

0
(b) absorbing: V - 0

Conditions for convergence in these cases can be obtained from

[411:

Theorem 3. Let fU(t),t L 0 be a birth and detaih process with

state space '0,1,2...).

If 0 is a reflecting boundary for V then U(n')/c - V and

n3*



(iv) holds if and only if the sequence , defined in 1heorAm I has
(7- 1  a - ,t 2- 1 n

(n itn) n L1(n) and n = n L(n) where ce and " 1+,2 are

positive and the L. have lir L. (x)/L. C ) ficr all x > 0.1 1 1

If 0 is an absorbing boundary for V and 0 = 0 in U then

U(n. )/c = V and (iv) holds if and only if in addition to) the

conditions stated above we have

x u(zc)

lim lim, u() V (dZ) = 0
x-0 n-*w 0 n

i
where v Cx) (= v(xc) - V(Cn))/(v(2c ) v(c ) v(i) andn n1 n n] i ]

i=l

i
u(i) = 7" (x .)-

j=l

In each case c = n 1/+o2L(n) and there are positive constants
n

A and 13 so that the limit process is a diffusion with scaleI J(x) - Ax x ! 0 and a speed measure m concentrated on (O,-)

given bY
2

13x if 2 0

m (x) =

B log x if '2 0

If "k2 > (, 0 is a reflecting boundary. In the othel- cases 0 is

absorbing.

Since Theorem 3 gives conditions for (ii) and (iv) to hold and the

arguments given above for Cii) and (v) still apply, we have thait i) -

Cv) hold. From Theorem 3.7, V+  is tight for x -4 0.
n 11

If 0 is a reflecting boundary it is casy to use rheorem 3.10 to

i



show V+ converges: a similar argument works to slmo,. lim(V1I T0 > 1)

n C o

exists (we only have to change the proof that Px1) and

QOI  '1/ :1 2

it follows from [401, p. 253 that QO(N - n1 - n I n).

If 0 is an absorbing boundary, however, both of zhese arguments

fail. We leave it to the interested reader to decide whelher the

conditioned limit theorem will hold in general in this crse.
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4. 4 The M/G/l Queue

In the M/G/i queue customers arrive tt tht jump ims (,L

Poisson process A( t) I 0 with rate 'and have sere vie times

which are independent positive random variables wilh the same

distribution.
I h

If denotes the amount of service required by the i
A(t)

custoraue t arrive after time 0 then SM(1) -h, amount

of work that has arrived at the facility at tin! t t 11 th, initial

backlog of work is x and the server In,)t ii a any- moment

hefore t then L(t) - x+S ()-I js IhK inou nt o ,- nh t completed

at time t. If the serve r hajs !i. il ] ,n 5, hayt to add to this

number the amounit (,f timo hi hi, - ho am of IAork that

remains in general is niva j  1' \v'' 1 )-0 V(' v

It is easy to use ,kD- r - i' e d,111 ionIS for U

to satisfy (ii)

'LTheorcm 1. Suppos, aEi K(l - 1') - 7 (0c). If

I-
N *X 0 then (v (n -) /T7n /2 V(0) - I n )c''tt to

(BI 13() = x) where 15 is - oI flee' ti Il' n w'l I oIn' i I ,I..e

Proof.

S(t) is the sum of -I i son nu mr )f indtopenilent random variables

1/2
with mean EP1 lrom 201 Pheorm 17 2 (x(n )-'(E-.)nt)/-n

cmnverges to a Brownian mot i k. FIrein t his it follA. that iI
l/21/

S- x 0 (L(n.)/f [L(O) 1/x cn ) onverves tOi ( 3(0)-
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and the desired conclusion now follows from the continuous mapping

theorem.

Since the limit in Theorem 1 is reflecting Brownia motion

(iii) holds. To see that (iv) and (v) are satisfied we observe that

if x x 0 and t n- t > 0

P(. inf V(ns) > 0 V(O) = XC 1/2)

O0-s , t n
n

P ( inf L(ns) > 0 L(O) = X 1/2)

0: S< st
n

SP( in s) > 0 B3(0) =x)

* - ( inf B(s) > 0 Tim x
O<s t

Having verified (i)-(v) the ne.ct step is to compute the asymptotic

formula for the probability of the conditioning event. To do this we

will use the Laplace transform.

Let T o  - inf(t>0:I(t) 01

Le t R (0) = E(e IU(0)
x

Since the arrivals form a Poisson process we hwivc

x+y x y

and
(() e (&)P(S(x) dy) (2)x . y

(0 ,()

From (1) it fol lows that there is i number rq(cx) se, that
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!N

0 (:7) - e Using this fact in (2) gives

I -x , < ) r - (c)s (x))

e C eXE(e (3)

Now if ) = 
-E(e(e - S(x)) = e so (3) may be

written ,-ts

or

c + -,9(T(cI)) (4)

If H is the distribution of 1' Takacs ([46], pp, 47-49) has

shown that. ,quation (4) has a unique positive solution given by

T i (a) e J i*( ) ()

where H' denotes the j-fold convolution of H.

ilg .(') for the sum in (5) we have

2
Brody C p. 78) has shown that if EP, 2 then

1/2 1/2

2 LIS ulo

I - d () x,: (2,',)1/2fl/2 : ;
JK

ing 1, £iej,1 I Of I)vnkn i 1i O , p. 179) ,,w , hoss that

P(T > LU)) x) x (2/r . 2 1/2t - /  as x
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At this point we are ready to use Theorem 3.10 to prove the

conditioned limit theorem. From results in 4.1 oi- 4.3 we have that

lim (vI T0 > 1) exists so it remains to show that the sequene

x.0

V+  is tight. To do this we will imitate the proof given in Section 4.1.
n

n 1/2
Let Jh = inf(j _ : > n

cO 1 -1a ,n ,n A (k)T > nh <} >I P i > J A (k), Ecls 

0 0 h-1 A
0=] 0

SZ f P(T0 > nsA- I(k) = ns n = A 1 (k))
k=l 0

XP(Jl A- A 1 I- sP' A 00 Eds

1A (kk-Ae-s/P-Zi C P(T 0 > nsiA (k) ns
k=1

k-i k-1

X< P 1 
- hcnl/2} k- P(- lin 1/2, ( k ds

k-] ! ,1,

Since P(T 0 > nslA-l(k)=ns) P(' 0I nslA(ns)=k-I) the cpression above

is

,-1 1l.nA/2, .A-ns (ns/\)
>( .n, P(Teo n-IA(iis) k--)C. k-" (is

k*l 0

= I > lWn 1 / 2 I ( J 0 > asris
'0

Dv y Qa{T > a) giver

Qa(J h < I,,. 0 > n) > -1nP 1  
1/ 2 , L0

h 0nQ(
0

3> 
n)
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Since has finite variance nPf(1 > bun1/ 0 as n - .Now

a 1
Q a T > n) - / L(n) so using Karamata's theorem gives

0

I Qa (To nslds -

02

nQ(T 0> P)

and Q a PJn < -IT > h)- -0. To complete the tightness proof we use

the same arguments which were used in Section 4.1 for the case C = 2.
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4.5 Conditioning on TB > n when B is a Bounded Set

In this section we will extend the results of Chapter 3 to study
n

the effect of conditioning a lattice random walk Sn!= S + . i on

N > n where N = inf~m [ L:- S EB and B is a finite- set. We will
B B m

leave it to the reader to check that the arguments given below apply

to the random walks studied in [14j, and that many of the results

below hold in the generality suggested by the, title.

The organization of this section is the same as that of the previous

four. We will first verify that (i)-(v) hold and then show the results

of Section 3.3 can be applied to conclude the desired conditioned limit

theorems.

Necessary and sufficient conditions for (ii) to hold were given

in Section 4.1. From results there

PX0j if f ( I PxT 0 > 0

so (iii) holds. To check thal. (V nINB nt ) converges when x - x > 0nIB n n n

and t - t > 0 rcquires more work.n

Let T (f) inf t 0 0: iIf If(s) 0. Now,
• O<s< t

ro t (T tIJf. i:jf f(s) 0 or sup f(s) 0
-SK: t O~s-t

and

pr -0 t < < P(V'(t) .< O3 0,

so if x > 0 and POT 0  01 = 1, it follows from ihe strong Markov
x

property that pX(c(T > t3) = 0 and P1(Nn > nJ-) pX fT(0 l > tj

'39



whenever x - x > 0 and t -* t > 0.
n n

Let A (NB> nt n. For all E > 0

LIMNF A -f inf I f(s)f >&
0-< s:9 t'

so
LIMNF An ( f:T 1 o (f) > t)

x
and using Theorem 2.4 gives (V nNB > nt) ( ( vXIT [O) > t)

To show that (v) holds let TC inf[t:V(t)[-t, ]) and observe

that if x -% 0 and n is sufficiently large
n

x nx nV n(

Pn > n P (T 1/21+ E < 1/2;P n E N>n-

c 0
If £ is such that T C is P a.s. continuous

NB> (T -T0NB  (1 1
lin P a) > P T 1/2) + E/2;P T > 1

Letn ' 0 0 V0T
Letting E.10, P (T( 1/21 1 0 and V (T)l(T<l/2) = 0 so the result

follows from the fact that PX(T( 0 1 > t) 4 0 for all t > 0.

If Q iN B. n, decreases to a positive limit then the methods of

Section 3.3 can be used to show

(v- /c = a N > n) V0

n]/nO B

so for the rest (if the section we will assume Qa(NB > n)4O, that is,

S is recurrent.
n

70
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Using Theorem 3 of Section 4.1 and Theorem 1.3 of 4 4, a random

walk in the domain of attraction of a stable law of ind e c is

recurrent if 4 > 1 and EX 0 or 1 and [' x > u - -2E1. u -du

1

c , so we will restrict our attention to these cases.

If Ce = 1 then Px(Trol > t) - I for all x / 0 (see 28],

Theorems 3.1 and 5.4) so from the arguments in Section 3.1 if the

limit exists in the sense of (a), V+ 
a V 0  In previous sections we

have eliminated such cases but in this instance we will not bo-cause

the situation has been studied by Belkin and his results indicate there

are technical complications which make the "trivia' case the hardest

of all.

To describe Belkin's result we have to introduce some of his

notation:

n
for n z 0 let QB(x 'y ) 

= P(S n = YNB n x)
Bn 'B

let g (x,y) E Q n(x,y)Bn:=O B .

9B(x,y) is the expected number of visits to y starting at x

up to and including the first visit to B. It is known (see L41) that

Lemma 1. If EX, = C then

B (x) lir g (X, y) exists.
B 13'

If EX < o then

gB(x) - 2 i. 1(xY) - gB(x,-y)j exists.
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The reason for our interest in this quantity is explained by

the next result (which comes from F4], p. 148).

Lemma 2. Let B be a finite set, B= (n:n > sup B),+

B_ (n:n < inf B), and C = B I B

2 x
If EX1 < " then g(X) > 0 if and only if P(NC < NB) > 0.

If EX2 = . then g x) > 0 if and only if Px(NB < NBI > 0
+

and NP (NB <NB > 0.

It is clear that pX(NC < NB
3 > 0 is necessary for a nondegenerate

conditioned limit theorem. The reason for requiring Px(NB < NB) and
+

PX(N 1 N B > 0 is less obvious but the need for this condition will be

indicated later. To justify assuming gB(x) > 0 at this point, we

observe that this condition holds if the limit distribution has

a <2 and Ib < 1.

Theorem I. ([41, p. 158) Let B be a finite set with gB(0) > 0

and let F be the distribution of X

If F belongs to the domain of attraction of a stable law of index

1 < u < 2 and EX 1 = 0, or F belongs to the domain of normal
I ' x

attraction of a stable law of index r 1 and lim J yF(dy) = (finite)
X> -x

then for every real number y

lim P(S /c nyISO= O,NB> n) = Q B(y)

where H, is a probability distribution with characteristic function
2B

-~~ -2 ...........



and a (tensity h given by the following formuLh:

2
If 1 <2 and EX, = oO then

11

11

(1+ b(t)t) x 1 0 c0 tKx)-b ( 1
0

where q is the characteristic function of the limit of F (c n)n
E2 2

If Ci = 2 and EX 2 < co thee1

h () ( 2l2 )9x -(S, 2KB~r(0))]

12,B() = (2y2)-Iexp(-x Na)[Ixl - (NIBi2B

At this point if we were conditioning on T > n we could use
0

Theorem 3.9 to conclude that

V# (S ,/cS 0,N> n)
n Ln-1 nO= 'B

converges weakly to a limit process with finite dimensional distributions

given by (2) and (3) of Section 3.3.

Although Theorem 3.9 cannot be appli,,d the same proof can be used

to give the result desired. Returning to See. ion 3.3 we see that to

conclude convergence of finikt dimensional distributions we needed (in

addition to the convergence of V+ (1) to v V 0) that equation (4)
n

was valid and (iii)-(v) hold; while to prove tighnless we needed

Theorems 3.3-3.5 ,f Section 3.2 which hold as long is the post-Tex!
process,; converges and lim P ,T 1 -1 0.

With slightly more effort we could ilso prove the co)nvergence of

V using an analogue of Theorem 3.10. Millar ([3( Lemma 4.5) has
n

shown:
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0

Theorem 2. Let Pt be the density of V (t). Let f be a

bounded Borel function.

Let Qtf = J f(ycit(y)dv where
tt

2

C1(y)  = (y/t)e- /2t if cy 2 and

_t____l (I1u) -2
= Pt(y) + -_ (y)-P (y)s (is if 1 < ( 2

If I < a < 2 and bh< 1 then

lir EXf(v(t))l t /P" (O0 > t, Q f

x-r o o> ti

If 1 and x1O or f = -1 and xtO then the same result

holds.

If ri = 2

lira EXI f(Vmt)) I [/PX(T~o > t0 = Qf ?:

From this we see that if I < , < 2 and I bj < I then

Iim(VxJT'on > 1) exists and the methods of Theorem 3.10 apply. If

,2 or [I b= I, however, the limits arc different for xJ0 or

x0 ( sei 30] Lemma -4.6 for the ease fbi =1) so to prove convergence

with Theorem 3.10 we would have to show lim lir P(\V(t) > 0! exists.
tiO o

If C( = 2, we can use Bolkin's result. Comparing the limits in
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Theorems 1 and 2 in this case we see that for all t > 0

1 - /EN 2gDO) -

lir P(e (t) > 01 (1(EN g (0))) = p

so IV converges to a process which is positive at all I > 0 with
n

probabilty PB and negative at all t > 0 with probability I-PB

If I " c < 2, jbf = I and :-B(0) - 0 a similar anlysis can

be performed to identify the limit. Sinec this involves manipulating

the transform in Theorem 1 and does not give us much new information,

we have not done these calculations.

We close this section by giving an example (due to Belkin [ 4

pp. 162-163) which shows what can happen when ih I and

gB(O) = 0.

Example. Let F be a distribution function for an integer valued

random variable X with PX -21 = 0 und suppoae F is in the

domain of normal attraction of a stable law :)f index c with I < f < 2.

Lept B= -l Since P0 rN < NBI 0 it follows from Lemma 2Let~~ ~~ B = -]•Sne B

that g B (0) = 0 and Theorem I cannot be app]ie l There is a good

reason for this: the conclusion of Theorem I is false. Belkin has

shown that (S /C Is O,N > n) converges to a random variable
1n n B

with characteristic function

1 - cjtj (l+w (t)) I xen(t(l-x)/)dt

0 I t(
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ABSTRACT

Let .. be a discrete time Markov process with state space E and

let S be aproper subset of E. In several (applications it is of interest
to know the behavior of the system after a large number of steps given
that the nrocess has not entered S. For example if<Ii is a branching

process a limit theorem of this type gives informatit about the size of

the kth generation given that extinction has not occured by time k.

Seneta and Vere-Jones have given sufficient conditions for the
conditioned sequence to converge (without normalization) when the state

space is discrete. Their results can be applied to sub-critical branching
processes. If the chain is null recurrent or transient, however, all
their imits are zero so we have to divide by constants which tend to
infinity to obtain an interesting limit theorem.

In this instance the most desirable type of result is a functional
limit theorem, i.e. a result asserting the convergence of a sequence of

stochastic processes derived from the sequence of observations. This was
the goal in several previous studies but in most cases the results ob-
tained are incomplete due to problems with the tightness argument.

It was the presence of these technical difficulties which motivated
this investigation. The remedies we have developed allow us to state

general conditions for the conditioned processes to converge when S is

a half-line or bounded set.

Our results can be applied to null recurrent Galton-Watson branching

processes (when the offspring distribution has a finite second moment),

to random walks in the domain of attraction of a stable law, to the

waiting time process of the M/G/I queue (when the service distribution
has finite second moment), and to birth and death processes in the domain
of attraction of a diffusion which is regular or has zero as a reflecting
boundary. The limit theorems we obtain in this way generalize and
cumplete several results in the literature.

An important aspect of our methods is that the main theorem is
deri-ed from a set of basic assumptions so if a person is interested in
a conditioned limit thoorem not included in the list above he can apply
our results directly instead of adapting one of our proofs to meet his

needs.

A second feature of our solution which deserves mention is that in
tne development of the main theorem we prove a result which gives con-
litions for the convergence of the conditioned measures P (" ;A ) when

P converges to P and inf P (A )> 0I. As the reader may expecV our
conditions are that the sets n converge to A in an appropriate sense
and that A may be approximated from the inside (or outside) bv sets C
which are P-continuity sets. m
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